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Piezo1 activates noncanonical EGFR endocytosis and
signaling
Carlos Pardo-Pastor1* and Jody Rosenblatt1,2

EGFR-ERK signaling controls cell cycle progression during development, homeostasis, and disease. While EGF
ligand and mechanical inputs can activate EGFR-ERK signaling, the molecules linking mechanical force to this
axis have remained mysterious. We previously found that stretch promotes mitosis via the stretch-activated ion
channel Piezo1 and ERK signaling. Here, we show that Piezo1 provides the missing link between mechanical
signals and EGFR-ERK activation. While both EGF- and Piezo1-dependent activation trigger clathrin-mediated
EGFR endocytosis and ERK activation, EGF relies on canonical tyrosine autophosphorylation, whereas Piezo1
involves Src-p38 kinase-dependent serine phosphorylation. In addition, unlike EGF, ex vivo lung slices
treated with Piezo1 agonist promoted cell cycle re-entry via nuclear ERK, AP-1 (FOS and JUN), and YAP accumu-
lation, typical of regenerative and malignant signaling. Our results suggest that mechanical activation via
Piezo1, Src, and p38 may be more relevant to controlling repair, regeneration, and cancer growth than tyrosine
kinase signaling via canonical EGF signaling, suggesting an alternative therapeutic approach.
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INTRODUCTION
Mechanical regulation of cell proliferation, differentiation, and mi-
gration was originally described decades ago (1–3), but only recent-
ly have molecules that integrate mechanics and signaling come to
light. The mechanosensitive Piezo ion channels and Yes-Associated
Protein 1 (YAP) transcriptional regulator are the most noteworthy
in this integration (4–6). Human Piezo1 and 2 are mechanically ac-
tivated cation channels, abundant in a wide variety of tissues and
cell types (4), that mediate extracellular calcium (Ca2+) influx in re-
sponse to cell confinement (7), stretch (8), shear stress (9, 10), or
matrix stiffness (11, 12). Piezo-dependent Ca2+ entry is critical for
development, regeneration, and cancer through its roles in cell mi-
gration (7, 11, 13), matrix remodeling (11, 14), cytokinesis (8), or
stiffness-dependent nuclear translocation of YAP (11, 12). We
found that Piezo1 promotes epithelial cell extrusion in response
to crowding (15) and rapid cell division (G2/M transition) in re-
sponse to stretch (16). Moreover, stretch also promotes cell exit
from quiescence (G0/G1 transition) and genome replication (G1/S
transition) (17), both requiring Piezo1 (18). These studies strength-
en the role of mechanical forces and Piezo1 as master regulators of
the cell cycle.
Soluble growth factors regulate cell function through membrane

receptors, too. Epidermal growth factor receptor (EGFR) is a widely
expressed receptor tyrosine kinase that autophosphorylates its C-
terminal cytoplasmic tyrosine residues after binding extracellular
soluble ligands (19–24). These modified residues act as docking
sites for adaptor proteins containing phosphotyrosine (pY)–
binding Src homology 2 (SH2) domains, such as SH2 domain–con-
taining 1 (SHC) and growth factor receptor–bound protein 2. Both
endocytic and effector proteins bind pY-bound adaptors, and their
specific combination and phosphorylation by EGFR triggers

receptor clathrin-mediated endocytosis (CME) and downstream
signaling pathways, such as rat sarcoma/mitogen-activated protein
kinase (MAPK), that impact cell migration, cycling (cell division,
quiescence, and replication), and malignancy (19–21, 23, 25–34).
In response to high ligand doses, EGFR becomes down-regulated
by a ubiquitin-dependent, nonclathrin endocytic mechanism that
targets the receptor for degradation (24, 35, 36).
Mechanical signals such as cell stretch (25, 26, 32), apicobasal

compression (37), matrix-cell adhesion and cell spreading (28, 29,
38, 39), or substrate stiffness (20, 27, 31) can also activate EGFR en-
docytosis and signaling. However, little is known about molecules
that transduce mechanical forces into EGFR signaling and which
EGFR pathways mechanical activation induces. As we previously
found that Piezo1 controls stretch-activation of the MAPK extracel-
lular signal–regulated kinase 1/2 (ERK1/2) (16), a target of EGFR,
here we investigate whether Piezo1 provides a molecular link
between mechanical and EGFR signaling.

RESULTS
Piezo1 triggers CME of EGFR
To investigate the role of Piezo1 in mechanical activation of EGFR
signaling, we exposed cells to shear stress, a Piezo1-activating me-
chanical stimulus (9, 10), and monitored internalization of EGFR
phosphorylated on tyrosine-1173 (pY1173-EGFR), an indicator of
active EGFR signaling (20, 38, 40, 41). We chose HeLa cells because
they endogenously express Piezo1 and are widely used for studying
EGFR (24, 36, 41–43). Serum-starved HeLa cells exposed to shear
stress for 15 min redistributed pY1173-EGFR from the cell periph-
ery to intracellular puncta that colocalize with the early endosome
marker early endosome antigen 1 (EEA1) (Fig. 1, A to E). To test
whether shear stress–dependent EGFR signaling requires Piezo1,
we knocked down Piezo1 with small interfering RNA (siRNA), con-
firming its loss by the suppression of Ca2+ transients in response to
the synthetic Piezo1 agonist, Yoda1 (44) (fig.S1, A to C). siRNA-
mediated knockdown of Piezo1 (siPiezo1) or clathrin heavy chain
[siCHC; key endocytic protein (24, 36)], impaired shear stress–
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induced pY1173-EGFR internalization and colocalization with
EEA1, similar to unstimulated siControl cells (Fig. 1, B to E),
showing that mechanical activation of EGFR endocytosis requires
Piezo1 and clathrin.
To directly activate Piezo1 without triggering other mechano-

sensitive pathways, we treated serum-starved HeLa cells with the
Piezo1 agonist Yoda1. Both 10 μM Yoda1 or EGF (10 ng/ml; as

positive control) redistributed pY1173-EGFR from the cell periph-
ery to intracellular EEA1+ puncta within 15 min (Fig. 1, F to I).
siPiezo1 suppressed responses to Yoda1 but not to EGF, whereas
CHC knockdown suppressed pY1173-EGFR internalization and
colocalization with EEA1 for both treatments (fig. S1, D to H).
Moreover, Yoda1-induced EGFR internalization in human lung ad-
enocarcinoma A549 and canine kidney Madin-Darby canine

Fig. 1. CME of EGFR in response to Piezo1 activation. (A and F) Schematics of experimental setups. (B, C, andG) Representativemaximum intensity projections of HeLa
cells immunostained for pY1173-EGFR or EEA1, following the indicated 15-min treatments. (D and H) pY1173-EGFR puncta per cell, where each symbol represents a cell
from N ≥ 4 independent experiments [n cells for each: (D) siControl, 36; siPiezo1, 161; siCHC, 28; and no shear, 44; (H) siControl: 244 (vehicle), 231 (Yoda1), and 221 (EGF);
siPiezo1, 182 (vehicle), 526 (Yoda1), and 192 (EGF); siCHC: 187 (vehicle), 371 (Yoda1), and 234 (EGF)]. (E and I) Manders colocalization coefficient for pY1173-EGFR and
EEA1. Each symbol represents a picture, from N ≥ 4 independent experiments with ≥20 cells per picture [n pictures for each: (E) siControl, 6; siPiezo1, 4; siCHC, 7; and no
shear, 4; (I) 12 for each treatment]. Scale bar, 20 μm. Error bars = median ± interquartile range. ns, nonsignificant, *P < 0.05, **P < 0.01, and ****P < 0.0001 in one-way
ANOVA followed by Kreskas-Wallis post hoc test with Dunn’s correction for multiple comparisons.
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kidney (MDCK) cells (fig. S2A), widely used in EGFR studies (33,
45–47), suggesting a conserved pathway in different cell types and
species. A phosphorylation-independent EGFR antibody further
confirmed that Piezo1 activation causes EGFR internalization (fig.
S2B). Together, these results demonstrate that mechanical stimuli
and Piezo1 agonist trigger Piezo1-dependent EGFR internalization
into early endosomes via CME, a pathway shared with canonical
EGFR signaling in response to low physiological EGF doses (24).

EGFR kinase activity and tyrosine phosphorylation are
dispensable for Piezo1-triggered EGFR endocytosis
Both canonical ligand-dependent EGFR phosphorylation and inter-
nalization or its transactivation by other transmembrane proteins,
Ca2+ signaling, or mechanical forces rely on ligand-receptor inter-
action and EGFR tyrosine autophosphorylation (22, 23, 25, 37).
Given that Piezo1 is a transmembrane protein that mediates Ca2+
influx in response to mechanical forces (4), we tested whether
Piezo1-dependent EGFR signaling requires receptor autophosphor-
ylation. As expected (25, 46), the EGFR kinase inhibitor PD153035
prevented EGFR internalization and its colocalization with EEA1 in
response to EGF. However, it did not affect responses to Yoda1

(Fig. 2, A to C, and fig. S2, C to E). In addition, Yoda1 treatment
did not increase pY1068- or pY1173-EGFR, two major autophos-
phorylation sites (Fig. 2, D and E) (20, 38, 40, 41, 46). Thus, we con-
clude that EGFR tyrosine kinase activity and canonical tyrosine
phosphorylation are dispensable for Piezo1-initiated EGFR
endocytosis.

Piezo1 activates noncanonical EGFR serine
phosphorylation by an SFK-p38 kinase axis
Cell-matrix adhesion regulates EGFR via the Src family kinases
(SFK) (29, 38) and can bypass EGFR kinase activity (39), suggesting
an alternative signaling axis to regulate EGFR in response to Piezo1
activation. HeLa cell pretreatment with the SFK inhibitor PP2 sup-
pressed Yoda1-induced pY1173-EGFR internalization and colocal-
ization with EEA1 but did not affect responses to EGF (Fig. 3, A to
C, and fig. S3, A, B, and D). This shows that EGFR endocytosis in
response to Yoda1 requires SFK activity, unlike EGF-mediated sig-
naling. Although adhesion-dependent EGFR signaling requires
SFK-dependent phosphorylation of EGFR on Y1068 (39), we find
that Yoda1 does not alter pY1068-EGFR levels (Fig. 2E). Therefore,

Fig. 2. EGFR kinase activity and tyrosine phosphorylation are dispensable for Piezo1-triggered EGFR endocytosis. (A) Schematic of the experimental setup. (B)
Representative maximum intensity projections of pY1173-EGFR stainings in HeLa cells treated for 15 min with vehicle, 10 μM Yoda1, or EGF (10 ng/ml) with or without 30-
min preincubation with 1 μM PD153035 (EGFR kinase inhibitor). (C) Counts of pY1173-EGFR puncta per cell after the indicated treatments. Each symbol represents a cell,
with the following n: vehicle, 2725; Yoda1, 860; EGF, 1766; PD, 2136; Yoda1 + PD, 405; EGF + PD, 2410; from six experiments. (D and E) Representative Western blots of
pY1173- and pY1068-EGFR. GAPDH and vinculin used as loading controls. Scale bar, 20 μm. Error bars = median ± interquartile range. ****P < 0.0001 in one-way ANOVA
followed by Kruskal-Wallis post hoc test with Dunn’s correction for multiple comparisons.
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we investigated other noncanonical mechanisms that might control
EGFR endocytosis by Piezo1.
Cellular stresses can activate p38 MAPK to phosphorylate EGFR

serine residues 1046 and 1047 (pS1046/1047-EGFR) and recruit the
endocytic machinery [e.g., activator protein 2 (AP-2), clathrin] to
internalize EGFR (34, 42, 45, 46, 48–50). Because Piezo1 can

activate p38 (51), we tested whether Piezo1-dependent EGFR endo-
cytosis requires p38. We find that inhibiting p38 with SB202190
suppresses EGFR endocytosis in response to Yoda1 but not to
EGF (Fig. 3, D and F, and fig. S3, A, C, and D). In addition, immu-
noblots indicate that Yoda1 but not EGF increases pS1046/1047-
EGFR in an SFK- and p38-dependent fashion (Fig. 3G).

Fig. 3. Piezo1 activates noncanoni-
cal EGFR serine phosphorylation by
an SFK-p38 kinase axis. (A and D)
Schematic of the experimental setups.
(B, E, andH) Representative maximum
intensity projections of pY1173-EGFR
(B and E) or pSer1046/1047-EGFR (H)
stainings in HeLa cells treated for 15
min with vehicle, 10 μM Yoda1, or EGF
(10 ng/ml) with or without 30-min
preincubations with 200 nM PP2 (SFK
inhibitor, B), or 10 μM SB202190 (p38
inhibitor, E). (C and F) Counts of
pY1173-EGFR puncta per cell after the
indicated treatments. Each symbol
represents a cell, with n: vehicle, 1143;
Yoda1, 717; EGF, 32; PP2, 1694; Yoda1
+ PP2, 887; and EGF + PP2, 829; six
experiments (C); vehicle, 867; Yoda1,
1125; EGF, 1544; SB, 948; Yoda1 + SB,
1358; and EGF + SB, 1016; three ex-
periments (F). (G) Representative
Western blots of pS1046/1047-EGFR.
Vinculin used as loading control. (I)
Counts of pSer1046/1047-EGFR
puncta per cell after the indicated
treatments. Each symbol represents
an independent experiment (N = 4),
with ≥20 cells per picture and n = 4
pictures per experiment. (J) Manders
colocalization coefficient for
pSer1046/1047-EGFR and EEA1. Each
symbol represents a picture (n for each
= vehicle, 13; Yoda1, 14; and EGF, 12),
from N ≥ 4 independent experiments
with ≥20 cells per picture. Scale bars,
20 μm. Error bars = median ± inter-
quartile range. *P < 0.05, **P < 0.01,
***P < 0.001, and ****P < 0.0001 one-
way ANOVA followed by Kruskal-Wallis
post hoc test with Dunn’s correction
for multiple comparisons.
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Accordingly, Yoda1 but not EGF also increased the number of
pS1046/1047-EGFR+ early endosomes (Fig. 3, H to J). Thus,
Piezo1 activation leads to SFK- and p38-dependent EGFR serine
phosphorylation to drive receptor endocytosis, a pathway shared
with cell stress (34, 42, 45, 46, 48–50).

Functional EGFR internalization in response to Piezo1
activation leads to different nuclear signals
ERK1/2 MAPK activation is a hallmark of EGFR signaling, with
amplitude, duration, and location determining ERK1/2 signaling
outcomes (30, 52). To investigate how Piezo1 activation of EGFR
signaling affects ERK1/2 signaling, we next followed total ERK1/2
activation and localization. Immunoblots indicate that both
Yoda1 and EGF activation of EGFR promote similar levels of
(active) phosphorylated ERK1/2 (pERK1/2) (Fig. 4A, left lanes).
While the EGFR kinase inhibitor PD153035 suppressed EGF-de-
pendent pERK1/2, it only partially inhibited phosphorylation by
Yoda1 (Fig. 4A, center lanes). However, the SFK inhibitor PP2
dampened both Yoda1- and EGF-induced pERK1/2 (Fig. 4A,
right lanes). pERK1/2 accumulates within nuclei in response to
Yoda1 but not EGF treatment (Fig. 4, B and C). As in previous ex-
periments, siPiezo1 cells did not respond to Yoda1 (Fig. 4, B and C),
confirming that Yoda1 relies on Piezo1. Therefore, despite trigger-
ing similar pERK1/2 levels, Piezo1- and EGF-dependent EGFR in-
ternalization led to different signaling outcomes.
Spatiotemporal dysregulation underlies many steps of tumori-

genesis (19, 30). The duration and strength of nuclear pERK1/2 sig-
naling regulates downstream gene expression dynamics, which
ultimately drives cell proliferation, differentiation, transformation,
and metastasis (19, 30). We found that Piezo1 activation by Yoda1
leads within 2 hours to nuclear accumulation of the dimeric tran-
scription factor AP-1, formed by the products of proto-oncogenes
FOS and JUN, within 2 hours, whereas EGF does not (Fig. 4, D and
E). In turn, AP-1 cooperates with YAP, which transcriptionally ac-
tivates dedifferentiation, regeneration, and malignancy, in response
to mechanical signals (5, 6, 53–55) and Piezo1 channel activation
(11, 12). Yoda1, but not EGF treatment, caused nuclear YAP accu-
mulation (Fig. 4, F and G). These results show that Piezo1 activation
triggers sustained nuclear accumulation of the dimeric transcrip-
tion factor AP-1 and their mechanosensitive coactivator YAP.
While Piezo1 knockdown prevented all Yoda1-dependent

nuclear responses (Fig. 4, H to K), CHC knockdown suppressed
only Yoda1-induced nuclear accumulation of AP-1 (Fig. 4, H and
I) but not YAP (Fig. 4, J and K). Basal nuclear YAP levels were
higher in siPiezo1 or siCHC than in siControl cells (Fig. 4K), sug-
gesting that basal YAP nuclear exclusion requires Piezo1 and CHC,
similar to a recent finding (56).
We next investigated whether Piezo1-dependent activation of

EGFR and YAP also occurs in tissues using ex vivo mouse lung
slices, previously used to study EGFR activation by mechanical
stimuli (37). While pY1173-EGFR levels were negligible in
control samples, 15-min treatments with Yoda1 or EGF increased
the number of intracellular pY1173-EGFR puncta in airway cells.
Inhibition of the EGFR kinase function with PD153035 suppressed
responses to EGF, but not to Yoda1 (Fig. 5A), confirming our cell
culture data (Fig. 2). In addition, Yoda1 treatments for 24, 48, or 72
hours increased the number of airway cells positive for both nuclear
YAP and the cycling cell marker Ki67, both of which were negligible
in control, untreated samples (Fig. 5B). Our lung slice experiments

confirm that activating EGFR via EGF versus Piezo1 trigger vastly
different outcomes in epithelial tissue and cultured cells.

DISCUSSION
We show that Piezo1 activates EGFR through an alternative pathway
to the canonical EGF-activation (Fig. 5C). During steady-state cell
turnover, EGF activates EGFR signaling via tyrosine autophosphor-
ylation, receptor internalization, and cytoplasmic ERK activation.
Here, we find that acute Piezo1-dependent EGFR activation
signals SFK/p38/nuclear ERK to transcribe early intermediate
genes (FOS and JUN) and YAP that promote cell cycle entry. In
this way, the same receptor can interpret different inputs to relay
separate outcomes, depending on the function of its tyrosine
kinase domain. We confirmed these findings in an ex vivo mouse
lung slice model over several days.
The regulation we found describes a mechanism consistent with

paradoxical signaling, where a given signal can trigger opposing
outcomes (57). In previous studies, we identified a paradoxical sig-
naling response involving Piezo1, depending on its location and the
force it experiences: In stretched cells, Piezo1 is mainly found at the
plasma and nuclearmembranes and promotes cell division, whereas
in crowded cells, the channel forms uncharacterized intracellular
structures that promote cell extrusion and death (15, 16). Similarly,
EGFR location determines signaling dynamics: At the plasmamem-
brane, EGFR promotes cell migration, whereas at endosomes, it
stimulates proliferation (52, 58–61). Moreover, AP-1 induction re-
quires EGFR at endosomes, without its kinase activity or Tyr phos-
phorylation (40). Our inhibitor and siRNA experiments show that
Piezo1-dependent EGFR signaling (e.g., ERK activation and AP-1
induction) requires EGFR internalization via CME but not its
kinase activity or Y1173 autophosphorylation (Figs. 2 and 4).
This favors a model where EGFR endocytosis is key for AP-1 induc-
tion in response to Piezo1 activation. Further experiments knocking
down endosome constituents and EGFR are needed to clarify
these aspects.
Our inhibitor data identify SFK and p38 as key intermediates for

Piezo1 activation of EGFR signaling. Our findings support previous
studies showing roles for p38 and EGFR in prosurvival and regen-
erative signaling, rather than known ligand-induced canonical
EGFR responses (45, 46, 48, 49, 62–64). Previous work identified
several exogenous stressors (antibiotics, anticancer drugs, ultravio-
let radiation, and Candida infection) as activators of this SFK-p38-
EGFR axis; however, our work proposes endogenous mechanical
forces activating this same axis via Piezo1.
Nevertheless, the mechanisms linking Piezo1 activation to SFK

and p38 remain unclear. The SFKmember Fyn, the Ca2+-dependent
protease chaplain, and Ca2+/calmodulin-dependent kinase II are
relevant candidates because all three are activated by Piezo-depen-
dent Ca2+ signals and invoked in p38 activation or EGFR signaling
in different scenarios (11, 65–69). Given the ubiquitous expression
of all these molecules and their participation in both cell homeosta-
sis and disease development, several research fields will benefit from
further characterization of the Piezo1-SFK-p38 axis using both
pharmacological and genetic approaches.
Our findings may be relevant for cancer resistance to anti-EGFR

therapy. First, approved EGFR-neutralizing antibodies or inhibitors
target the receptor’s kinase activity. However, transformation and
bad prognosis are associated with increased mechanical signaling
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Fig. 4. Functional EGFR internalization in response to Piezo1 activation leads to different nuclear signals. (A and B) Representative western blot (A) and immu-
nostainings (B) of pERK1/2 after 15 min of the indicated treatments, with vinculin as a loading control in (A) and DNA and actin serve as spatial references in (B). (C)
Quantification of the nuclear versus cytoplasmic (Nuc/Cyt) enrichment of pERK1/2 signal. (D, F, H, and J) Representative immunostainings of pJUN and FOS (D and H) or
YAP (F and J) after 2 hours of the indicated treatments. DNA and actin shown as spatial references. (E and G) Quantification of the nuclear versus cytoplasmic (Nuc/Cyt)
enrichment of FOS and pJUN (E) or YAP (G) signal. Each symbol in (C), (E), (G) and (K) represents a cell from≥3 independent experiments, with the following ns: vehicle: 91
(C, siCtrl), 146 (C, siPiezo1), 3538 (E), 177 (G), 420 (K, siCtrl), 113 (K, siPiezo1), and 205 (K, siCHC); Yoda1: 152 (C, siCtrl), 134 (C, siPiezo1), 2543 (E), 301 (G), 420 (K, siCtrl), 113
(K, siPiezo1), and 193 (K, siCHC); EGF: 160 (C, siCtrl), 139 (C, siPiezo1), 3110 (E), and 283 (G). In (I), each symbol represents a picture, with ≥200 cells per picture, from N ≥ 3
independent experiments, with the following ns: vehicle: 9 (siC, FOS), 8 (siPiezo1 and FOS), 8 (siCHC and FOS), 8 (siC and JUN), 7 (siPiezo1 and JUN), and 4 (siCHC and JUN);
Yoda1: 12 (siC and FOS), 12 (siPiezo1 and FOS), 9 (siCHC and FOS), 8 (siCtrl and JUN), 6 (siPiezo1 and JUN), and 5 (siCHC and JUN). Scale bars, 20 μm. Error bars = median ±
interquartile range. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 in one-way ANOVA followed by Kruskal-Wallis post hoc test with Dunn’s correction for multiple
comparisons.
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and expression of Piezo1, SFKs, p38, and EGFR but not to EGFR
phosphorylation status (11, 14, 70–72). Second, internalized
EGFR has prosurvival functions in cancer cells that are kinase-inde-
pendent and, thus, unaltered by current tyrosine kinase targeting
therapies (46, 47, 62, 72, 73). One possibility is that the increased
mechanical forces cancer cells experience as they invade and
migrate (7, 11, 74, 75) will activate the Piezo1-SFK-p38-EGFR
axis, thereby promoting cell proliferation and chemo-resistance.
In addition, Piezo1 might be promoting endocytosis by its mem-
brane-bending activity (76) or by triggering actin polymerization,
essential for ensuring endocytosis under high membrane tension
(7, 11, 77, 78). Manipulation of endocytic pathways for disease treat-
ment is a promising research area and targeting this axis could
address an unmet medical need against kinase inhibitor–resistant
tumors, e.g., ~50% of non–small cell lung cancers or ~80% of ad-
vanced colorectal cancers (72).
Our identification of Piezo1 as an initiator of EGFR endocytosis

contributes to a growing list of membrane-based processes con-
trolled by this channel that includes endosomal trafficking to the
midbody during mitotic abscission (8) and phagocytosis (79).
Membrane tension is both the fundamental activator of Piezo chan-
nels (80, 81) and a key determinant of membrane remodeling and
trafficking controlling pluripotency, differentiation, homeostatic
turnover, and aging (82–84). Our work adds EGFR to the picture,
highlighting the relevance of kinase-independent EGFR-driven
mechanisms previously disregarded by a focus on EGFR mutations.

All these recent works point to themechanical control of membrane
trafficking as a promising research field and highlight Piezo chan-
nels as key players in it.
Our findings may also yield practical laboratory uses. Given that

artificial YAP activation can de-differentiate cells into lineage-re-
stricted stem cells and increase organ size (53, 85), our findings
that Yoda1 activates YAP signaling and cell cycle entry ex vivo
(Fig. 5) suggest a simple method to obtain tissue-specific stem
cells in culture or promote tissue growth bypassing current needs
to transduce cells with lentiviral vectors (53).
While we have identified an important role for mechanical acti-

vation of EGFR via Piezo1, one caveat of our work is that the me-
chanical (shear stress) and chemical (Yoda1 and EGF) stimuli we
used may not capture the physical forces that cells ordinarily expe-
rience. For instance, cells squeezing through narrow passages may
experience both compression and stretch simultaneously and spa-
tiotemporal fluctuations could also affect the outcomes of these
signals (7, 13). In addition, EGFR internalization assayed by immu-
nostaining does not reflect changes to its structure or binding part-
ners, both of which determine downstream signaling (ERK activity
and FOS transcription) and cell function (differentiation and pro-
liferation) (19, 86).
Our work identifies Piezo1 as a missing link for mechanically

activating EGFR and indicates that this activation adopts a different
pathway with different outcomes. Mechanical activation of EGFR
requires SFK/p38 kinases and serine phosphorylation, rather than

Fig. 5. Piezo1 activates noncanonical EGFR endocytosis and YAP signaling ex vivo. (A and B) Representative mouse lung slices immunostained for pY1173-EGFR
after 15 min or for YAP and Ki67 after 48 hours of the indicated treatments. Scale bars, 20 μm. (C) Model schematic.
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EGFR tyrosine phosphorylation, enzymatically separating these two
differential outcomes. Given the roles of mechanics in regeneration,
oncogenesis, and the increased prevalence of tyrosine kinase inhib-
itor chemoresistance, our discovery may reveal insight into EGFR
signaling during repair and malignancy.

MATERIALS AND METHODS
Unless noted, reagents were obtained from Thermo Fisher
Scientific.

Cell culture
Nonverified HeLa, A549, and MDCK-II cells were grown in Dul-
becco’s modified Eagle’s medium (DMEM, 31966021) with 10%
fetal bovine serum (FBS; 10270106) and 1% penicillin/streptomycin
(Pen/Strep; 15070063) in a cell culture incubator at 37°C with 5%
CO2. For all experiments, cells were seeded in growth medium.
After 24 hours, growth medium was washed twice with phos-
phate-buffered saline (PBS; 14190250) and replaced by starvation
medium (DMEM + 1% Pen/Strep, FBS omitted) for 24 hours
before cell treatment. All cells tested negative for mycoplasma con-
tamination in periodic tests (Sartorius, 20-700-20).

siRNA transfection
The day after seeding, 20 to 40% confluent cells were transfected
with Lipofectamine RNAiMax (13778) and reduced-serum
minimal essential medium (OptiMEM, 31985062) following man-
ufacturer’s instructions. siRNA pool (Horizon Discovery: siControl,
D-001810-10-50; siPIEZO1, L-020870-03-0050; and siCHC, L-
004001-01-0020) final concentration was 10 nM. siRNA transfec-
tion was repeated 24 hours later. The next day, cells were trypsinized
and seeded on glass coverslips in growth medium before starvation
overnight and treatment. Experiments were performed 72 hours
after the first siRNA transfection.

Chemicals and treatments
After overnight serum starvation, cells were treated with dimethyl
sulfoxide (DMSO; 276855), 10 μMYoda1 (Tocris, 5586, reconstitut-
ed in DMSO) or EGF (10 ng/ml; PeproTech, 400-25, reconstituted
in deionized water) for indicated durations. Experiments involving
inhibitors included a 30-min pretreatment with EGFR kinase inhib-
itor 1 μM PD153035 (Sigma-Aldrich, SML0564), SFK inhibitor 200
nM PP2 (Sigma-Aldrich, P0042), or p38 inhibitor 10 μM SB202190
(Abcam, ab120638), all reconstituted in DMSO. All treatments were
prepared reusing starvation medium.
Shear stress was delivered to cells seeded on microfluidic cham-

bers (Ibid 80166, I Luer 0.2 mm height, polymer coating) using a
peristaltic pump (Thermo Fisher Scientific, 16609762) with a star-
vation medium flow rate of 4 ml/min. According to the manufac-
turer’s instructions, shear stress (τ) is the product of flow rate (ϕ, 4
ml/min), medium’s dynamical viscosity [η≈ 0.0073 dynes·s/cm2 for
serum-free DMEM (87)] and a chamber-dependent correction
factor (512.9), yielding ≈ 15 dynes/cm2, a shear stress value
shown to activate Piezo1 (9, 10).

Calcium imaging
Cells grown on glass coverslips were loaded with 4.5 μM of the Ca2+-
sensitive dye Calbryte 520 AM (AAT Bioquest, 20651, reconstituted
in DMSO) for 30 min in the cell culture incubator (37°C, 5% CO2),

followed by washing and 30 min of additional incubation for AM
cleavage and dye equilibration. Coverslips were then mounted on a
recording chamber (Warner Instruments, 642420) and intracellular
Ca2+ levels were imaged at room temperature (RT) using a 20× air
objective, 2 × 2 binning, and green fluorescent protein–compatible
epifluorescence settings. All solutions were prepared in Fluobrite
DMEM (A1896701) supplemented with 20 mM Hepes
(15630080). For solution exchange, we used a peristaltic pump con-
nected to the recording chamber.

Western blot
Cells were seeded on 10-cm culture plates and starved and treated
when 60 to 70% confluent. After treatment, plates were placed on
ice, washed twice with ice-cold PBS, and lysed in 250 μl per plate of
radioimmunoprecipitation assay (RIPA; 89901) buffer supplement-
ed with EDTA and protease (78430) and phosphatase (Merck,
524625) inhibitor cocktails. After 1 min of incubation on ice,
plates were scraped and the lysate placed in tubes, followed by 30-
min incubation in ice, vortexing every 5 min. Lysates were then cen-
trifuged at 13000 rpm for 10 min at 4°C. The resulting supernatants
were placed in new tubes and their protein content quantified with a
bicinchoninic acid kit (23225). Fifty micrograms of protein adjusted
to 10 μl in RIPA buffer and dying (B0007) buffers was denatured at
95°C for 10 min, spun down, supplemented with sample reducing
buffer (B0004), and loaded in 4 to 12% bis-tris gels
(NW04120BOX). A well with 5 μl of a prestained protein standard
(LC5925) was used to track protein separation during electrophore-
sis at 120 V for 1.5 hours in MOPS-SDS buffer (B0001). Proteins
were then transferred to nitrocellulose membranes (IB23002) with
a dry transfer device (IB21001) at 25 V for 8 min. Membranes were
blocked for 1 hour at RT with 5% bovine serum albumin (BSA; for
phosphorylated targets) or with 5% nonfat powder milk. After over-
night primary antibody incubation and three 5-min washings,
membranes were incubated at RT for 1 hour with secondary anti-
bodies followed by three additional 5-min washings, 1-min incuba-
tion with enhanced chemiluminiscence substrate (32209), and
imaging. Band density was later quantified with the Analyze/Gels
tool in Fiji (88). In some cases, membranes were then stripped
and reblotted following the manufacturer ’s instructions (Sigma-
Aldrich, 2500). A 0.1% Tween 20 (Sigma-Aldrich, P137) in tris(hy-
droxymethyl)aminomethane-buffered saline (TTBS) was used for
blocking solutions and washings.

Antibodies–Western blot
Primary antibodies are as follows: pY1173-EGFR (R&D Systems,
AF1095; RRID: AB_416526), pY1068-EGFR (Cell Signaling Tech-
nology, 3777S; RRID: AB_2096270), pS1046/S1047-EGFR
(Abcam, ab76300; RRID: AB_1523528), and pERK1/2 (Cell Signal-
ing Technology, 4370S; RRID: AB_2315112) all 1/1000 in 5% BSA-
TTBS; and vinculin (700062; RRID: AB_2532280) and glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH; Abcam, ab8245;
RRID: AB_2107448), 1/2000 in 5% fat-free powder milk-TTBS. In-
cubated overnight at 4°C inside Falcon tubes with constant rotation.
Secondary antibodies are as follows: horseradish peroxidase–

conjugated secondary anti-rabbit antibody (65-6120; RRID:
AB_88384) diluted 1:2500 in 5% nonfat powder milk-TTBS and in-
cubated 1 hour at RT.
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Lung slice obtention, treatment, and staining
Animal use for this study was approved by the Ethical Review Com-
mittee at King’s College London and the Home Office, United
Kingdom, according to Animals (Scientific Procedures) Act 1986
[Home Office Project Licensee Training (PPL) number
P68983265]. Mouse lung slices were obtained adapting an existing
protocol (89). C57BL/6J mice (The Jackson Laboratory, strain
000664; RRID: IMSR_JAX:000664) were killed by inhalation of
CO2 followed by cervical dislocation. After opening the chest
cavity, a 20 gauge × 1.25 in canula was inserted in the trachea
through a small incision and used to inflate the lungs with 2%
low-melting agarose [Thermo Fisher Scientific, BP1360, 2% in
Hanks’ balanced salt solution (14025)]. After excision and
washing in PBS, the lobes were separated and individually embed-
ded in 4% low-melting agarose. After casting on ice, a Leica
VT1200S vibratome was used to cut 200-μm-thick slices. Slices
were washed and incubated overnight in DMEM/F-12 (11320033)
with 10% FBS and 1% Pen/Strep in the cell culture incubator. The
next morning, slices were individually transferred to a 24-well plate
and treated with DMSO or 10 μM Yoda1. After the indicated times,
treatments were aspirated, and slices washed thrice with PBS and
fixed with 4% paraformaldehyde (PFA; 28908) overnight at 4°C.
After two 30-min washings, slices were blocked in 0.1% Triton X-
100 and 1% BSA. Primary and secondary antibodies (1/100) were
consecutively incubated overnight at 4°C before incubation with
1/1000 40,6-diamidino-2-phenylindole for 20 min and mounting
in Prolong Gold (P36930). A 0.5% Triton X-100 was used for
three 30-min washings between incubations. All solutions were pre-
pared in PBS.

Fixed cell staining
After treatment, cells grown on glass coverslips were fixed in 4%
PFA for 20 min at 37°C, permeabilized with 0.5% Triton X-100
(Sigma-Aldrich, X-100) for 5 min at RT, and stained with
primary (overnight, 4°C) and secondary (45 min, RT) antibodies.
Coverslips were mounted with Fluoromount-G (004958-02). All so-
lutions were prepared and washed with PBS.

Antibodies–staining
Primary antibodies are as follows: pY1173-EGFR (1/250, R&D
Systems, AF1095; RRID: AB_416526), pS1046/1047-EGFR (1/250,
Abcam, ab76300; RRID: AB_1523528), total EGFR (1/200,
antibodies.com, A86603; RRID: AB_2753073), EEA1 (1/250, BD
Biosciences, 610457; RRID: AB_397830), phospho-ERK (1/200,
Cell Signaling Technology, 4370S; RRID: AB_2315112), YAP (1/
200, Santa Cruz Biotechnology, sc-101199; RRID: AB_1131430),
phospho-cJUN (1/200, Abcam, ab32385; RRID: AB_726900),
cFOS (1/200, Santa Cruz Biotechnology, sc-166940; RRID:
AB_10609634), and Ki67 (1/100, Abcam, ab16667; RRID:
AB_302459).
Secondary antibodies are as follows: 1/250 Alexa Fluor (AF)–

conjugated 488 anti-rabbit (A11008; RRID: AB_143165) and 594
anti-mouse (A11005; RRID: AB_141372), supplemented with 1/
500 AF647 phalloidin (A22287) and Hoechst (30 μg/ml; 62249).
For mouse lung slices, 1/100 antibody dilutions were used. All

mixes were prepared in 1% BSA (A7906-100G) in PBS.

Imaging
Samples were imaged at 1-μm-thick Z displacements through 20×
and 40× air and 60× oil objectives of a Nikon Eclipse Ti2-E micro-
scope with a Yokogawa CSU-W1 spinning disk system coupled to
an Andor DU-888 camera, and a Toptica multilaser bed. Settings
remained unchanged between conditions.

Quantification of pY1173-EGFR internalization
Maximum Intensity Projections (MIP) were built from raw ND2
files using the Extract Images and Make projections functions of
the Process images macro set developed by C. Leterrier in Fiji, avail-
able at https://github.com/cleterrier/Process_Images. Next, Cell
Profiler (90) was used to sequentially (i) segment nuclei using the
DNA channel, (ii) segment cells on the actin channel using nuclei as
seeds, (iii) generate masks of the cytoplasm after shrinking seg-
mented cells to omit cell boundaries, (iv) enhance speckles in the
pY1173-EGFR image using a feature size of 10, (v) segment speckles
for counting, and (vi) export data as comma-separated
values (CSV).

Quantification of pS1046/1047-EGFR internalization
pS1046/1047-EGFR puncta were manually counted in Fiji from
two-color MIP of EEA1 and pS1046/1047-EGFR, using EEA1 as
spatial reference for endosomes.

Colocalization analysis
We opted for an approach generally used for colocalization studies
of endosomal proteins, otherwise susceptible to statistical artifacts
(91). First, we applied a 32 × 32 px median filter to MIPs of EEA1
and pY1173-EGFR (Figs. 1 and 2) or pS1046/1047-EGFR (Fig. 3).
The resulting imagewas subtracted from the originalMIPs for back-
ground correction. Then, EGFR-EEA1 colocalization was quanti-
fied as the Manders overlap coefficient for pY1173-EGFR and
EEA1 using the Coloc2 plugin in Fiji.

Nuclear translocation of YAP, cFOS, and pJUN
Background, intra-, and juxta- nuclear regions of interest (ROIs)
were manually drawn with Fiji using the mid-height image of
each Z-stack. Median intensity values of each ROI were exported
to a CSV file later used for background subtraction and nuclear/cy-
toplasmic ratio calculation in RStudio (Posit) or Excel (Microsoft).

Statistical analysis
All graphs and statistical analyses were done with Prism 9.5.1
(GraphPad Software). Data are presented as median ± interquartile
range. Given that data distribution was not Gaussian, the statistical
significance of the differences between treatments was assessed with
one-way analysis of variance (ANOVA) followed by Kruskal-Wallis
post hoc test with Dunn’s correction for multiple comparisons, as
suggested by the software. The threshold for statistical significance
was P < 0.05.

Supplementary Materials
This PDF file includes:
Figs. S1 to S3
Legend for table S1
Legend for example cell profiler pipeline for EGFR puncta detection
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Other Supplementary Material for this
manuscript includes the following:
Table S1
Example cell profiler pipeline for EGFR puncta detection
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